The Virtual-Time Data-Parallel Machine

Shioupyn Shen and Leonard Kleinrock

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024-1596

Abstract

We propose the “Virtual-Time Data-Parallel Ma-
chine” to execute SIMD (Single Instruction Multiple
Data) programs asynchronously. We first illustrate
how asynchronous execution is more efficient than syn-
chronous execution. For a simple model, we show that
asynchronous execution outperforms synchronous ex-
ecution roughly by a factor of (In N), where N is the
number of processors in the system. We then explore
how to execute SIMD programs asynchronously with-
out violating the SIMD semantics. We design a FIFO
priority cache, one for each processing element, to
record the recent history of all variables. The cache,
which is stacked between the processor and the mem-
ory, supports asynchronous execution in hardware effi-
ciently and preserves the SIMD semantics of the soft-
ware transparently. Analysis and simulation results
indicate that the Virtual-Time Data-Parallel Machine
can achieve linear speed-up for computation intensive
data-parallel programs when the number of processors
is large.

1 Introduction

For the past twenty years, solid state technology has
been much more successful in reducing the cost of
VLSI chips than in increasing the peak speed of ECL
circuits. As a direct result, the architectural superi-
ority of supercomputers is vanishing because we can
easily implement most of the advanced features of su-
percomputers on a single chip!. The performance gap
between the fastest processor (in terms of MIPS) and
the most cost-effective processor (in terms of MIPs/$)
is diminishing rapidly. In the future, the key to su-
percomputing will not be the high speed of a single
processor; instead, it will be the high degree of paral-
lelism.

The difficulties of parallel processing are two-fold.
The first problem is that the computational model is
hard to use (for asynchronous execution) and the sec-
ond problem is that the hardware efficiency is poor (for
synchronous execution). We propose the “Virtual-
Time Data-Parallel Machine” to solve both problems

IThere are approximately three million transistors in an Intel
80586 microprocessor but only two million transistors in a CRAY-1
supercomputer.
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at once. The concept of this machine is derived from
“The Connection Machine” [4] and “Virtual Time” [6].

The Connection Machine introduced the data-
parallel computational model [5]. The SIMD seman-
tics of the data-parallel model make it easy to develop
parallel programs and make it capable of expressing
fine-grain parallelism. Though the Connection Ma-
chine achieves significant speed-up for a large number
of processors, hardware efficiency may be poor because
of its requirement for synchronous execution.

Virtual Time introduced the “Time Warp” synchro-
nization mechanism for parallel discrete event simu-
lation [7]. The optimistic approach of Time Warp
eliminates unnecessary blocking, and therefore makes
better use of the hardware. However, it is hard to
generalize Virtual Time to other paradigms of parallel
processing.

We suggest the use of Time Warp to execute data-
parallel programs asynchronously in hopes of exploit-
ing more parallelism and obtaining better efficiency.
By performance modeling, we show that the efficiency
(i.e., the sustained speed over the raw speed) of the
system is asymptotically 40% for a large number of
processors; this is a significant improvement over the
traditional approach.

The organization of this paper is as follows: Sec-
tion 2 provides the motivation, Section 3 explores the
key concept, Section 4 addresses performance model-
ing, Section 5 describes the hardware support, Sec-
tion 6 discusses the extensions, and the last section
concludes the paper.

2 Motivation — The Interconnection
Network Bottleneck

The data-parallel approach has been very successful in
solving or avoiding many of the technical difficulties
of parallel processing.

Data-parallel computers would be the obvious
champion in the parallel processing arena if the in-
terconnection network were not the bottleneck.

The performance of the data-parallel approach is
more sensitive to the interconnection network than
that of the other approaches because of its SIMD se-
mantics. Even though all processors start executing
the same instruction simultaneously, they seldom fin-
ish this instruction together for many reasons. For
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Figure 1: A hypothetical example of remote access
time distribution.

example, the access of remote operands (i.e., variables
on other processing elements) may take vastly different
amounts of time due to network contention and block-
ing. As a result, the execution time of an instruction
varies among the processors.

Figure 1 shows a hypothetical example of the re-
mote access time distribution, where f(t) and F(t) are
the probability density function and probability distri-
bution function of the remote access time, respectively.
Though the remote access time distributions for vari-
ous interconnection networks are different, they have
several characteristics in common — they have large
mean and variance, and more importantly, their prob-
ability density functions have long, tiny tails. The
long tiny tail has little influence on the mean remote
access time because it is so tiny. However, it is the
g)ng (though tiny) tail that drives the performance

own.

The synchronous execution of SIMD programs
forces a processor which finishes the instruction early
wait until all processors finish this instruction. There-
fore, what really counts is the longest execution time
(in other words, the worst case in remote access time)
across all processors. The maximum value of N inde-
pendent samples is approximately F1(1- -}g), where
F~1(t) is the inverse function of F(t). For large N,
the above term is determined by the long, tiny tail of
f(t) as shown in Fig. 2.

In our experience and that of the others, the critical
bottleneck of data-parallel computing is the intercon-
nection network. Even though the bandwidth of the
interconnection network is large, we cannot justify the
cost of providing sufficient bandwidth to reduce the
maximum remote access time for random communica-
tion patterns. We would like to know how good the
performance will be if we smooth out the variation of
the remote access time. If the performance is very
good, we also would like to figure out how to do it at
acceptable cost.
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Figure 2: The longest remote access time for N pro-
cessors is F~1(1 — ), which is mainly determined by
t}Ee)long tiny tail of the probability density function
F@).

First, we show that the system can achieve linear
speed-up (constant efficiency) for a large number of
processors. Second, we propose a very cost-effective
solution (asynchronous execution) to reduce the sus-
ceptibility to the variation of remote access time with-
out modifying the interconnection network. Our ap-
proach is to attach minimal hardware support to every
processing element to “neutralize” the network haz-
ards, instead of resorting to an expensive “upgrade” of
the interconnection network. We can achieve roughly
the same performance as if the remote access time
is constant but with twice the mean. This approach
trades the variance for a larger mean. The above
trade-off is favorable because the major bottleneck is
in the variance instead of the mean, especially for sys-
tems with a large number of processors.

In addition to the remote operand fetch, the actual
computation of the instruction sometimes introduces
large variations into the instruction execution time
as well. Conditional enabling/disabling is a common
practice in data-parallel programming. Even though
it takes constant amount of time for the enabled pro-
cessors to execute the instruction, collectively speak-
ing, the instruction execution time varies because it
takes no time for the disabled processors to skip the
instruction. If the disabling probability is high?, then
the execution time varies a lot. In this paper, we use
the generic term “instruction execution time”, which
may refer to either the remote access time or the com-
putation time or both.

2For example, a tree-reduction operation (5] of size N takes
(logy N) iterations for a total of (N — 1) operations. The disabling
probability is as high as (1 — Isil?N)




3 The Key Concept — Asynchronous
SIMD

The Connection Machine is a typical example of the
traditional data-parallel machine, which has the fol-
lowing characteristics — (i) SIMD, (ii) distributed
memory, (iii) massive parallelism, and (iv) pro-
grammable interconnection. We are perfectly happy
with these properties except the first one — SIMD,
or more precisely, synchronous execution of SIMD
programs. The ineﬂicienc{) of synchronous execution
comes from unnecessary blocking. Processors that
finish the current instruction early are blocked un-
til all processors finish this instruction, even though
the operands needed to execute the next instruction
may be available. As we know, synchronous execu-
tion is a direct way to enforce the “SIMD semantics”,
but what really matters is the SIMD semantics itself,
rather than the synchronous execution.

SIMD semantics is in fact a kind of causality con-
straint, which is explained as follows. The execu-
tion of the i-th instruction (an event “scheduled” at
“simulation” time i) depends on the execution of the
(3-1)-th instruction (an event scheduled at simula-
tion time i-1). The sequence count of the instruc-
tion stream is analogous to the simulation time, which
specifies when an event should happen, in contrast to
“real-time” when the event does happen. The data-
dependency constraint of the SIMD semantics is thus
equivalent to the causality constraint of parallel dis-
crete event simulation (PDES).

The synchronous execution of SIMD programs is es-
sentially the time-stepped execution of PDES, which
is considered an inefficient implementation of PDES.
On the other hand, the optimistic approach of Vir-
tual Time employs periodic state-saving so that pro-
cessors have more freedom to go ahead instead of be-
ing blocked unnecessarily. The Virtual-Time Data-
Parallel Machine takes a similar (but not identical)
approach — the execution of the next instruction can
proceed independently of the progress on other proces-
sors as long as its own data dependencies are satisfied
and its current state is properly saved.

Figure 3 illustrates how asynchronous execution of
SIMD programs is far more efficient than the con-
ventional synchronous execution. In a task graph,
nodes correspond to tasks (instructions) and links cor-
respond to causality constraints (data dependencies).
Figure 3.a shows the intrinsic data dependencies of an
example program, which ignores all artifacts due to
the execution model. When synchronous execution is
enforced, it is equivalent to adding more links to the
task graph such that every task depends on all the
tasks one row above it. Figure 3.b shows the large
number of additional data dependencies of the pro-
gram caused by the requirements of the synchronous
execution model.

We know that adding/removing links to a task
graph decreases/increases the parallelism of the task
graph, respectively. The Virtual-Time Data-Parallel
Machine promotes asynchronous execution by remov-
ing those extra links associated with synchronous exe-
cution (i.e., to achieve better performance) while pre-
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Figure 3: The task graph representation of data de-
pendencies.

serving the original data dependencies (i.e., without
sacrificing the semantics).

4 Performance Modeling — Partial
Synchronization

A simple model of the Virtual-Time Data-Parallel Ma-
chine is the “partial synchronization” model [1], in
contrast to “total synchronization” model (i.e., barrier
synchronization). The model is as follows. The SIMD
machine consists of N homogeneous processors, i.e.,
every processor has the same processing power and
executes the same instruction stream such that the
behavior of every processor is statistically equivalent.
The task graphr{Fig. 4) is an oo by N matrix, one col-
umn for each processor. Each task depends on a set
of tasks one row above it. Let the size of this set be
A, which is the number of immediate ancestors of this
task. If A = N for all tasks, then it is total synchro-
nization; otherwise, it is partial synchronization. We
are interested in the case where A is a small number.

31f the tasks correspond to instructions, then the value of A is
analogous to the number of operands of an assembly instruction,
which is usually small.
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Figure 4: A snapshot of a task graph in execution.

For partial synchronization, the instructions in ex-
ecution spread out in virtual-time*. However, this dis-
persion is confined due to the data dependency con-
straints. In order to describe the dynamic bgavior
of the system, we introduce the following terms (refer
to Fig. 4). The global virtual-time (GVT) of the sys-
tem is defined to be the minimum virtual-time of all
processors, i.e.,

GVT £ min {virtual-time} 1)
Vproc.
The relative virtual-time (xvt) of an instruction (or a

processor) is defined to be the difference between its
virtual-time and the GVT, i.e.,

rvt 2 virtual-time — GVT

2
The dispersion function describes how processors scat-
ter in virtual-time, i.e.,

dispersion(i) & Prob[rvt = i]

3)

which can be interpreted as the probability that the
rvt of a (tagged) processor is i (averaged over a long
period of real-time), or as the distribution of proces-
sors in virtual-time tit some real-time instant). Fig-
ure 4 shows a snapshot of the system, and Figure 5
illustrates its dynamic behavior.

“In this paper, “virtual-time” and “simulation-time” are used
interchangeably, as are “instruction” and “task”.
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We make the following assumptions for the purpose
of performance modeling:

1. The execution time of tasks is exponentially dis-
tributed.

2. The number of immediate ancestors (4) is exactly
two.

3. One ancestor is the preceding task on the same
processor, and the other ancestor is uniformly dis-
tributed among the tasks in the preceding row."

Though these assumptions are not particularly real-
istic, they are simple enough to capture some funda-
mental insight as to how asynchronous execution out-
performs synchronous execution.

We are interested in the following performance mea-
sures:

Speed-Up:

Speed-Up 2
execution time with a single processor, 4)
execution time with N processors

Efficiency: Soeed.U
peed-Up

N )

Efficiency =

Efficiency-Gain:

Efficiency Gain =
efficiency of asynchronous execution
efficiency of synchronous execution

(6)

Figure 6 shows the speed-up and efficiency of syn-
chronous execution from analysis [2]. The efficiency of
synchronous execution drops (to zero) as the number
of processors increases. Figure 7 shows the speed-up
and efficiency of asynchronous execution as obtained
from simulation®. Analytical results E] show that the
asymptotic efficiency for a large number of processors
is approximately 40%. Figure 8 shows that the ef-
ficiency gain is proportional to the logarithm of the
number of processors. From this figure we see the mo-
tivation for considering asynchronous execution.

We now address the scalability of the Virtual-Time
Data-Parallel Machine. The traditional definition of
scalability is with respect to the speed-up of running
the same program on an increasing number of pro-
cessors. This definition is not directly applicable to
data-parallel machines where the number of proces-
sors is on the same order as the intrinsic parallelism
of the program. When the number of processors in-
creases, the problem size must increase proportionally
so that the intrinsic parallelism increases proportion-
ally as well. If a system scales up well, the execution
time is relatively constant.

5Analyses are also available {8] for an upper-bound, a lower
bound, and an approximation to the efficiency of asynchronous
execution.
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Figure 6: Speed-up and efficiency of synchronous ex-
ecution.

An architecture simulator has been developed to
run “real” data-parallel programs on the Virtual-Time
Data-Parallel Machine to illustrate its superb scalabil-
ity. The main assumption® made in the simulator is
the randomness in instruction execution time (in fact,
the remote access time). Figure 9 shows the time re-
quired to solve a Laplace’s equation asynchronously
versus synchronously. This diagram reveals that asyn-

8We also make other assumptions on the number of cycles for
integer and floating-point operations. As long as the number of
cycles for computation is less than that for communication, the
simulation results are not sensitive to these assumptions.
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Figure 7: Speed-up and efficiency of asynchronous ex-
ecution.

chronous execution scales up well as shown by the
almost constant execution time, while the execution
time for synchronous execution increases. The above
argument does not mean that asynchronous execution
is more favorable than synchronous execution in solv-
ing partial differential equations since, had the instruc-
tion execution time been constant, as if, with such
equations, then the synchronous and asynchronous ap-
proaches would have behaved similarly.. However, it
indicates that asynchronous execution is capable of
smoothing out the variations of instruction execution
time.
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Figure 8: The efficiency gain — asynchronous over syn-
chronous.

5 Hardware Support — The FIFO Pri-
ority Cache

During asynchronous execution, processors are al-
lowed to spread out at different virtual-times. Con-
sider the case in which one processor at a smaller
virtual-time (say, i) sends a memory request’ to an-
other processor at a larger virtual-time (j, where
j > 1). The time (virtual-time) of the request is cur-
rent to the former processor but previous to the latter
processor. The requested value has actually been gen-
erated in a previous instruction (before ) on the latter
processor, and is subject to being overwritten by in-
structions between i and (j-1). In order to prevent
overwriting useful data, every processor must save all
previous values of its variables (i.e., the memory “his-
tory”) back to GVT(since no processor has a virtual-
time earlier than GVT, no values earlier than GVTwill be
requested in the future). For practical reasons, there
is a physical limit on the size of the memory history,
say K. If a processor goes so fast that it is K instruc-
tions ahead of GVT, it must be temporarily suspended
because it has used up its memory history. Analysis
[8] shows that if K is greater than (In N), the above
situation rarely occurs and the performance hardly de-
grades due to the limited size of memory history.®

Memory history is so important and so frequently
used that it deserves special hardware support. We
have designed a “FIFO priority cache” (which imple-
ments the incremental backup algorithm) for the mem-
ory history (one cache per processor) with the follow-
ing characteristics.

FIFO Queueing: Write requests are not executed
immediately; instead, they are pushed into a

"Memory requests are time-stamped to unambiguously specify
the requested values.
8What a coincidence! (In N) happens to be the performance gain

as well.
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Figure 9: The execution time of a data-parallel pro-
gram when the number of processors increases with
the problem size.

FIFO queue (of size K). If the queue is full, the
oldest pending write request (i.e., the one with
the earliest virtual-time) is popped out of the
FIFO queue and then sent to the main memory
(i.e., to update the main memory).

Associative Search: For every read request whose
virtual-time is less than or equal to the program
counter of the processor, we conduct an associa-
tive search (like a cache memory) in the queue
for hits, where a hit is any pending write request
in the queue with matching address and earlier
virtual-time.

Priority Arbitration: If there is more than one hit,
we choose the latest hit, i.e., the one with the
largest virtual-time. Priority arbitration (e.g.,
choosing the latest hit) can be implemented by
a priority encoder/decoder pair. If there is no
hit (i.e., a cache miss), then we consult the main
memory because the requested value is stored in
the main memory.

Related research on the space-time memory can be
found in [3] and gSI]M

Synchronous D machines can hardly benefit
from the cache memory because a cache miss for one
processor is aggravated to a cache miss for the whole
system. Asynchronous execution allows the system to
take full advantage of the cache memory technology to
resolve the speed discrepancy between the CPU and
the main memory. A small FIFO priority cache not
only supports the memory history, but also accelerates
memory references.

6 Extensions — Two-Phase Write

Even though we can smooth out the variations of the
remote access time, the interconnection network may




still be the performance bottleneck (however, the bot-
tleneck is less severe than before). The problem resides
in the mismatch of local access time and remote ac-
cess time. The technology is such that the speed of
the processor (and the memory) has improved quickly
but the speed (in terms of latency instead of through-
put) of the interconnection network has improved at
a much slower rate. As a result, the remote access
time is tens to one hundred times larger than the lo-
cal access time, and the mismatch will become even
worse in the future. The processors spend most of
their time waiting for remote operands because the ac-
tual computation or the local references can be done
in a flash. If we could pipeline the instruction exe-
cution, the throughput of the system would improve
dramatically. However, the variation of remote access
time makes pipelining difficult if not impossible.

Traditional pipelining is “synchronous” pipelin-
ing in the sense that timing information is known
in advance so that a reservation table synchronizes
the resource allocation. Data-flow is “asynchronous”
pipelining in the sense that only the data-dependency
counts and timing information is either unknown or
irrelevant. Since this paper is promoting the asyn-
chronity, whenever the “synchronous” approach fails,
try its “asynchronous” counterpart.

The sequential semantics of SIMD programs adds
an implicit ancestor to every instruction on every pro-
cessor — the preceding instruction on each of these pro-
cessors. However, we observe that the result of an in-
struction may not be used immediately by the next
instruction. If the current instruction is blocked ge. .
waiting for a remote operand), the execution o t%ne
next instruction can proceed without waiting for the
current instruction to finish. Before the next instruc-
tion starts executing, the processor must schedule the
execution of the current instruction and invalidate the
variables that may be modified by the current instruc-
tion. Such a problem was addressed many years ago
by the Tomasulo algorithm [9]. This algorithm, used
by the floating point unit of the IBM 360/91, con-
verts sequential computation into data-flow computa-
tion within a small sliding window of instructions.

The main idea is to separate a write operation of
a variable into two phases — the logical write and the
physical write. The logical write is executed first be-
fore the content of the write operation is available; it
invalidates the variable and assigns a unique identi-
fier to the content of the write operation. From then
on, all read requests to that variable (before the vari-
able is overwritten) are transformed to waiting for that
identifier. The next instruction can proceed after the
logical write without waiting for the physical write.
The physical write is executed when the content of
the variable becomes available; it is sent to every pro-
cessor waiting for the corresponding identifier. Once
we adopt the two-phase write, then head-of-the-line
blocking, which enforces sequential execution, is elim-
inated; at the same time, the sequential semantics
are preserved. Thus we see that the techniques used
to compensate for the long pipeline stages of floating
point arithmetic units in sequential machine may now
be used to compensate for the long (network) delays
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due to remote access in parallel processing systems.

The two-phase write can be easily implemented in
the memory history by adding an extra busy bit to ev-
ery outstanding update. A logical write sets the busy
bit to one, representing the fact that an update is tak-
ing place, and the content is not available. A physical
write resets the busy bit to zero, representing the fact
that the data in this update is available. References
to a busy update receive the time-stamped address of
the update (which serves as the unique identifier), and
then get blocked. When a physical write is executed,
all retgerenoes to the matching identifier are unblocked.

With the two-phase write, the Virtual-Time Data-
Parallel Machine converts the SIMD computation
from control-flow to data-flow (within a small sliding
window of neighboring instructions). Data-flow execu-
tion recovers more threads of execution than control-
flow, which increases the concurrency and improves
the efficiency of the Virtual-Time Data-Parallel Ma-
chine.

7 Conclusions

Long and unpredictable remote access latency is often
the performance bottleneck of massively parallel com-
puting. Asynchronous execution of the Virtual-Time
Data-Parallel Machine provides one way to relieve this
bottleneck. We have proposed some minimal modi-
fications to the architecture of the traditional data-
parallel machine (e.g., the CM-2), which converts the
way it executes SIMD programs from synchronous to
asynchronous. We have provided a basic foundation
for the understanding of both why and how to im-
prove the efficiency of SIMD programs by allowing
asynchronous execution.

Asynchronous execution makes the machine more
MIMD (Multiple Instruction Multiple Data)-like. It is
nevertheless a SIMD machine from the programmer’s
point of view! A more detailed discussion of these
ideas and a comprehensive quantitative analysis of this
machine can be found in [8].
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